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The seven-equation model for two-phase flows is a full non-equilibrium model, each phase
has its own pressure, velocity, temperature, etc. A single value for each property, an equi-
librium value, can be achieved by relaxation methods. This model has better features than
other reduced models of equilibrium pressure for the numerical approximations in the
presence of non-conservative terms. In this paper we modify this model to include the heat
and mass transfer. We insert the heat and mass transfer through temperature and Gibbs
free energy relaxation effects. New relaxation terms are modeled and new procedures
for the instantaneous temperature and Gibbs free energy relaxation toward equilibrium
is proposed. For modeling such relaxation terms, our idea is to make use of the assump-
tions that the mechanical properties, the pressure and the velocity, relax much faster than
the thermal properties, the temperature and the Gibbs free energy, and the ratio of the
Gibbs free energy relaxation time to the temperature relaxation time is extremely high.
All relaxation processes are assumed to be instantaneous, i.e. the relaxation times are very
close to zero. The temperature and the Gibbs free energy relaxation are used only at the
interfaces. By these modifications we get a new model which is able to deal with transition
fronts, evaporation fronts, where heat and mass transfer occur. These fronts appear as extra
waves in the system. We use the same test problems on metastable liquids as in Saurel
et al. [R. Saurel, F. Petitpas, R. Abgrall, Modeling phase transition in metastable liquids:
application to cavitating and flashing flows, J. Fluid Mech. 607 (2008) 313–350]. We have
almost similar results. Computed results are compared to the experimental ones of Simões-
Moreira and Shepherd [J.R. Simões-Moreira, J.E. Shepherd, Evaporation waves in super-
heated dodecane, J. Fluid Mech. 382 (1999) 63–86]. A reasonable agreement is achieved.
In addition we consider the six-equation model with a single velocity which is obtained
from the seven-equation model in the asymptotic limit of zero velocity relaxation time.
The same procedure for the heat and mass transfer is used with the six-equation model
and a comparison is made between the results of this model with the results of the
seven-equation model.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In the last two decades, considerable research has been devoted to the modeling and simulation of compressible two-
phase flows. Most of the models used are typically derived by using averaging procedures [9,10,14]. Both the mathematical
modeling and numerical computation have certain inherent difficulties.
. All rights reserved.
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The difficulties in modeling concern the physical transfer processes taking place across the interface such as mass,
momentum and heat transfer. Using averaging techniques of the single phase equations results in additional terms, which
describe these transfer processes. The exact expressions for the transfer terms are usually unknown [9]. Also there appear
differential terms that are extracted from the transfer terms that prevent the system from being in divergence form. There-
fore, they are referred to as the non-conservative terms and they are responsible for numerical difficulties.

The most general two-phase flow model consists of seven partial differential equations, the evolution equation for the
volume fraction of one of the phases together with balance equations for mass, momentum and energy for each phase.
The seven-equation model is a full non-equilibrium model, each phase has its own pressure, velocity, temperature, etc. Sev-
eral authors considered such type of models, Baer and Nunziato [4], Embid and Baer [11] as well as Saurel and Abgrall [27].
Saurel and Abgrall [27] proposed a Godunov-type method for the solution of this model. Also they proposed instantaneous
relaxation procedures for the pressure and the velocity that make the pressures and velocities of phases relax to common
values. The main disadvantage of this model is the large number of waves.

Several authors have considered a five-equation reduced model which is obtained in the asymptotic limit of the seven-
equation model, see Kapila et al. [15], Murrone and Guillard [23], Petitpas et al. [24] and Saurel et al. [33]. This model satisfies
the mechanical equilibrium, it has a single pressure and a single velocity. It is composed of two mass equations, a mixture
momentum equation and a mixture energy equation. These equations are written in conservative formulation, while the
fifth-equation of this model is a non-conservative equation for the volume fraction which contains a non-conservative term
involving the divergence of the velocity.

Even though the five-equation model is reduced it has severe numerical difficulties. These difficulties include:

� Shock computational difficulties due to the non-conservative character of the model.
� Maintaining volume fraction positivity due to the difficulties in the approximation of the non-conservative term involving

the divergence of the velocity.
� Non-monotonic behavior of the mixture sound speed, that obeys the Wood formula, with respect to the volume fraction,

see [34]. This behavior may cause inaccurate wave transmission across diffuse interfaces.

The above difficulties are detailed in Saurel et al. [34] and Petitpas et al. [24]. It is noted that the conventional Godunov-
type schemes are not suitable for the resolution of this model [24]. To circumvent these difficulties, the Riemann problem is
solved by the help of shock and Riemann invariant relations that were derived by Saurel et al. [32]. And a specific relaxation
projection method is used instead of the conventional Godunov method, see Saurel et al. [29] and Petitpas et al. [24]. More-
over, Saurel et al. [33] modified this model to take into account phase transition by including temperature and chemical po-
tential relaxation effects.

From the computational point of view the seven-equation model has several advantages over the five-equation model:

� Preserving the positivity of the volume fraction is easier.
� The mixture sound speed has a monotonic behavior, see Petitpas et al. [24].

According to the attractive advantages of the seven-equation model we aim in this paper to modify this model to include
the heat and mass transfer and to present numerical investigations for the resulting model compared with some previously
known results. Our attention is devoted to the evaporation that appears in cavitating flows. Thus we can compare our results
with the results of Saurel et al. [33] for metastable liquids, i.e. liquids with temperature higher than the saturation
temperature.

We use the seven-equation model of Saurel and Abgrall [27] which is a modified form of the Baer–Nunziato model [4]. For
the solution of the hyperbolic part of the model a modified Godunov-type scheme is used. For the mechanical relaxation, the
instantaneous velocity and pressure relaxation procedures of Saurel and Abgrall [27] are taken.

We insert the heat and mass transfer through relaxation effects. New terms associated with the heat and mass transfer
are modeled, these terms are given in terms of the temperature difference for the heat transfer and in terms of the Gibbs free
energy difference for the mass transfer. Also we propose new procedures for the instantaneous temperature and Gibbs free
energy relaxation toward equilibrium. These procedures are used at each time step after the mechanical relaxations. They
are used only at specific locations, i.e. at evaporation fronts.

Since the exact expressions for the transfer terms are unknown, our idea to model them is to refer to some general phys-
ical observations besides the second law of thermodynamics. In particular we assume that the mechanical properties relax
much faster than the thermal properties. Also we assume that the relaxation time for the temperature is much smaller than
that of the Gibbs free energy. In fact these assumptions agree with physical evidence in a large number of situations, see
[5,13,15,22]. In the book of Müller and Müller [22] some similar assumption is used in the analysis of the equilibrium con-
ditions for droplets and bubbles, see Chapter 11 there. In Kapila et al. [15] there are some estimates given for the time scales
of the relaxation of the velocity, pressure and temperature in granular materials. These estimations show that the relaxation
time for the temperature is significantly larger than relaxation times for both the velocity and the pressure. Also other esti-
mations for detonation applications show that the time scale of the velocity relaxation and pressure relaxation are of the
same order of magnitude while the temperature relaxation time is much greater than that for the velocity and pressure,
see [7,26]. More discussion of this point is given in Section 3.2.
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By our modifications of the seven-equation model we get a new model which is able to deal with transition fronts, spe-
cifically here evaporation fronts, where heat and mass transfer occur. These fronts appear as extra waves in the system, see
Le Metayer et al. [21] and Saurel et al. [33].

Moreover we consider the six-equation model with a single velocity which is obtained from the seven-equation model in
the asymptotic limit of zero velocity relaxation time. This model consists of the volume fraction equation of one of the
phases, two mass balance equations, a mixture momentum equation and two energy equations. As with the seven-equation
model this model has better features for numerical computations than the five-equation model. In fact the major difficulty in
the numerics of the five-equation model comes from the equilibrium of the pressure. For more details concerning the six-
equation model without phase transition you can see [34].

We model the heat and mass transfer for the six-equation model by using our procedure that is proposed for the seven-
equation model under the same assumptions.

We use the same test problems of Saurel et al. [33] for metastable liquids. We see in our results the extra waves that ap-
pear due to the phase transition. Also our results are in a good agreement with the results of Saurel et al. [33].

Computed results are compared to the experimental data of Simões-Moreira and Shepherd [36]. Indeed, the computed
front velocities of the evaporation waves are compared to the measured ones at several initial temperatures. There is a rea-
sonable agreement with the experimental data.

A comparison between the results of the two models is made. There is no significant difference between the results of
both models under the same conditions, but there is a significant difference in the CPU time consumed by both models, this
makes the six-equation model less expensive.

This paper is organized as follows: In Section 2 we present the mathematical model and its closure relations. Also we de-
duce phasic entropy equations that will be used in later sections. Section 3 is devoted to the numerical method, in particular,
we present a modified Godunov-type scheme with the HLLC-type Riemann solver [38] for the seven-equation model. In Sec-
tion 4 we model the heat and mass transfer through the temperature and the Gibbs free energy relaxation effects. Our mod-
eled terms keep the mechanical equilibrium during the temperature relaxation, also they keep the mechanical equilibrium
and the temperature equilibrium during the Gibbs free energy relaxation. Mathematical procedures are introduced for the
instantaneous relaxation of the temperature and the Gibbs free energy that are used at each time step after the velocity and
the pressure relaxation. In Section 5 we consider the six-equation model with a single velocity, we apply the same ideas pro-
posed for the heat and mass transfer in the seven-equation model on this case too. Finally, in Section 6 we present some
numerical results. Comparison with experimental data is made and comparisons between the results of the seven-equation
model and the six-equation model are considered.

2. Mathematical model

The two-phase flow model of Saurel and Abgrall [27] without heat and mass transfer in one dimension can be written as:
@a1

@t
þ uI

@a1

@x
¼ lðp1 � p2Þ; ð1aÞ

@a1q1

@t
þ @ða1q1u1Þ

@x
¼ 0; ð1bÞ

@a1q1u1

@t
þ @ða1q1u2

1 þ a1p1Þ
@x

¼ pI
@a1

@x
þ kðu2 � u1Þ; ð1cÞ

@a1q1E1

@t
þ @ða1ðq1E1 þ p1Þu1Þ

@x
¼ pIuI

@a1

@x
þ lpIðp2 � p1Þ þ kuIðu2 � u1Þ; ð1dÞ

@a2q2

@t
þ @ða2q2u2Þ

@x
¼ 0; ð1eÞ

@a2q2u2

@t
þ @ða2q2u2

2 þ a2p2Þ
@x

¼ �pI
@a1

@x
� kðu2 � u1Þ; ð1fÞ

@a2q2E2

@t
þ @ða2ðq2E2 þ p2Þu2Þ

@x
¼ �pIuI

@a1

@x
� lpIðp2 � p1Þ � kuIðu2 � u1Þ: ð1gÞ
The notations are classical: ak is the volume fraction, qk the density, uk the velocity, pk the pressure and Ek ¼ ek þ
u2

k
2 the total

specific energy, where ek is the specific internal energy.
Eq. (1a) is the evolution equation for the volume fraction of phase 1. The volume fractions for both phases are related by

the saturation constraint, a1 þ a2 ¼ 1. The sets of Eqs. (1b)–(1d) and (1e)–(1g) express the conservation of mass, momentum
and energy for phase 1 and phase 2, respectively.

The terms pI and uI are the interfacial pressure and the interfacial velocity, respectively. As in [27], the interfacial pressure is
defined as the mixture pressure, while the interfacial velocity is defined as the velocity of the center of mass
pI ¼ a1p1 þ a2p2; uI ¼
a1q1u1 þ a2q2u2

a1q1 þ a2q2
: ð2Þ
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Other closure relations for the interfacial terms are possible. One other choice is defined by Baer and Nunziato [4] as:
Table 1
EOS par

Phas

Vapo

Liqu

Table 2
EOS par

Phas

Vapo

Liqu
pI ¼ p1; uI ¼ u2:
Further closure relations were derived by Saurel et al. [30] and written as follows
pI ¼
Z1p2 þ Z2p1

Z1 þ Z2
þ sign

@a1

@x

� �
ðu2 � u1ÞZ1Z2

Z1 þ Z2
; ð3Þ

uI ¼
Z1u1 þ Z2u2

Z1 þ Z2
þ sign

@a1

@x

� �
p2 � p1

Z1 þ Z2
;

where Zk represents the acoustic impedance, Zk ¼ qkck, where the speed of sound ck is given as
c2
k ¼

pk
q2

k
� @ek

@qk

� �
pk

@ek
@pk

� �
qk

; k ¼ 1;2: ð4Þ
In this work for the model (1) we will use the relations that are given in (2).
The parameters k and l > 0 that appear in the model are the relaxation parameters which determine the rates at which

the velocities and pressures of the two phases relax to a common value. In this work we are interested in the instantaneous
equilibrium for both the velocity and the pressure, thus the parameters k and l are assumed to be infinite.

The model (1) is a non strictly hyperbolic system. For details of the mathematical properties of this model see Appendix A.
2.1. Equations of state (EOS)

Equations of state are used to close the system (1). Since this model will be modified to include the heat and mass trans-
fer, appropriate EOS are required.

Most phase transition models use a cubic EOS, like the Van der Waals EOS. But using such an EOS produces negative
squared sound speed in a certain zone of the two-phase flow, the spinodal zone. This causes a loss of hyperbolicity and leads
to computational failure [25,33]. To overcome this problem each fluid obeys its own EOS as a pure material, also these EOS
should satisfy certain convexity constraints [19,25,33].

In this paper we will use a modified form of the stiffened gas EOS (SG-EOS) with the same parameters for the dodecane
and the water as in Saurel et al. [33] and Le Métayer et al. [20]. An essential issue is that the various parameters are linked to
each other to fulfill some constraints to recover the phase diagram. This makes such a choice of EOS suitable for phase tran-
sitions [20,33]. For k ¼ 1;2, they are expressed as
ekðpk;qkÞ ¼
pk þ ckpk

qkðck � 1Þ þ qk; ð5aÞ

Tkðpk;qkÞ ¼
pk þ pk

Cvkqkðck � 1Þ ; ð5bÞ

sðpk; TkÞ ¼ Cvk ln
Tck

k

ðpk þ pkÞðck�1Þ þ q0k; ð5cÞ
where Tk is the temperature, sk the specific entropy and Cvk the heat capacity at constant volume. The parameters ck;pk; qk and
q0k are characteristic constants of the thermodynamic behavior of the fluid. All parameters of the SG-EOS are given in Table 1
for the water and in Table 2 for the dodecane.
ameters for vapor and liquid water.

e c p ðPaÞ Cv ðJ=kg=KÞ Cp ðJ=kg=KÞ q ðJ=kgÞ q0 ðJ=kg=KÞ

r 1.43 0 1:04� 103 1:487� 103 2030� 103 �23� 103

id 2.35 109 1:816� 103 4:267� 103 �1167� 103 0

ameters for vapor and liquid dodecane.

e c p ðPaÞ Cv ðJ=kg=KÞ Cp ðJ=kg=KÞ q ðJ=kgÞ q0 ðJ=kg=KÞ

r 1.025 0 1:956� 103 2:005� 103 �237� 103 �24� 103

id 2.35 4� 108 1:077� 103 2:534� 103 �755� 103 0
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2.2. Entropy equations

In this part we deduce the entropy equation for each phase. These equations will be used later. Denote the material deriv-
ative as
Dkð�Þ
Dt
¼ @ð�Þ

@t
þ uk

@ð�Þ
@x

; k ¼ 1;2:
Using the continuity Eq. (1b) with the momentum Eq. (1c), we have
a1q1
D1u1

Dt
þ @a1p1

@x
¼ pI

@a1

@x
þ kðu2 � u1Þ:
Multiplying this equation by u1, we get the following equation for the kinetic energy
a1q1

D1ð
u2

1
2 Þ

Dt
þ u1

@a1p1

@x
¼ u1pI

@a1

@x
þ ku1ðu2 � u1Þ:
Subtracting this equation from the total energy Eq. (1d), we obtain the internal energy equation
a1q1
D1e1

Dt
þ a1p1

@u1

@x
¼ pIðuI � u1Þ

@a1

@x
þ lpIðp2 � p1Þ þ kðuI � u1Þðu2 � u1Þ: ð6Þ
From the volume fraction Eq. (1a) with the continuity Eq. (1b) we have
a1
D1q1

Dt
þ a1q1

@u1

@x
¼ q1ðuI � u1Þ

@a1

@x
þ lq1ðp2 � p1Þ: ð7Þ
To get an equation for the entropy we use the Gibbs relation
T1ds1 ¼ de1 �
p1

q2
1

dq1:
By taking the material derivative for this relation and multiplying by a1q1, we obtain
a1q1T1
D1s1

Dt
¼ a1q1

D1e1

Dt
� a1p1

q1

D1q1

Dt
: ð8Þ
Using (6) and (7) in (8), we have
a1q1T1
D1s1

Dt
¼ ðpI � p1ÞðuI � u1Þ

@a1

@x
þ lðpI � p1Þðp2 � p1Þ þ kðuI � u1Þðu2 � u1Þ:
In a similar way we deduce the entropy equation for phase ”2” which is given as
a2q2T2
D2s2

Dt
¼ ðpI � p2ÞðuI � u2Þ

@a2

@x
� lðpI � p2Þðp2 � p1Þ � kðuI � u2Þðu2 � u1Þ:
3. Numerical method

The source terms of the system (1) consist of differential parts and non-differential parts. As in [27] to account for both
parts we use the Strang splitting approach [37]. Let LDt

h be the operator of numerical solution of the hyperbolic part of the
system (1) over Dt and L

Dt
2
s the operator of integration of the source and relaxation terms over half of the time interval, i.e.

Dt
2 . Thus the solution is obtained by the succession of operators.
Unþ1
j ¼ L

Dt
2
s LDt

h L
Dt
2
s Un

j ; ð9Þ
where U ¼ ða1;a1q1;a1q1u1;a1q1E1;a2q2;a2q2u2;a2q2E2ÞT .

3.1. Hyperbolic operator

Consider the hyperbolic part of the system (1)
@a1

@t
þ uI

@a1

@x
¼ 0; ð10aÞ

@u
@t
þ @fðu;a1Þ

@x
¼ hðu;a1Þ

@a1

@x
; ð10bÞ
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where
u ¼

a1q1

a1q1u1

a1q1E1

a2q2

a2q2u2

a2q2E2

266666666664

377777777775
; fðu;a1Þ ¼

a1q1u1

a1q1u2
1 þ a1p1

a1ðq1E1 þ p1Þu1

a2q2u2

a2q2u2
2 þ a2p2

a2ðq2E2 þ p2Þu2

266666666664

377777777775
; hðu;a1Þ ¼

0

pI

pIuI

0

�pI

�pIuI

266666666664

377777777775
:

Following [27] a modified Godunov scheme is used to take into account the discretization of the non-conservative part of the
system (10). Assume that we have some Godunov-type discretization for the system (10b) of the form
unþ1
j ¼ un

j �
Dt
Dx
½fðu�ðun

j ;u
n
jþ1ÞÞ � fðu�ðun

j�1;u
n
j ÞÞ� þ DthjDj; ð11Þ
where Dj is the discrete form of the term @a1
@x , which has to be determined, and u�ðun

j ;u
n
jþ1Þ is the value of u along the line

x ¼ xjþ1
2

for the Riemann problem with the states un
j ;u

n
jþ1.

The components of the system (11) for phase ”1” can be written as
ðaqÞnþ1
j ¼ ðaqÞnj �

Dt
Dx
ðaquÞ�jþ1

2
� ðaquÞ�j�1

2

h i
; ð12aÞ

ðaquÞnþ1
j ¼ ðaquÞnj �

Dt
Dx
ðaqu2 þ apÞ�jþ1

2
� ðaqu2 þ apÞ�j�1

2

h i
þ DtðpIÞ

n
j Dj; ð12bÞ

ðaqEÞnþ1
j ¼ ðaqEÞnj �

Dt
Dx
ðaquEþ apuÞ�jþ1

2
� ðaquEþ apuÞ�j�1

2

h i
þ DtðpIÞ

n
j ðuIÞnj Dj: ð12cÞ
The index ”1” is omitted for simplicity.
In order to find an expression for Dj, the idea of Abgrall [1] is used, that a uniform pressure and velocity must remain

uniform during time evolution, for more discussion about this idea see [28]. Assume p and u are a constant pressure and
velocity everywhere at time tn. Then according to the Abgrall principle we have
pn
j ¼ pnþ1

j ¼ ðpIÞ
n
j ¼ p�j�1

2
¼ p; ð13Þ

un
j ¼ unþ1

j ¼ ðuIÞnj ¼ u�j�1
2
¼ u: ð14Þ
Multiplying (12a) by u and subtracting the result from (12b), we obtain
Dj ¼
1
Dx
ða�jþ1

2
� a�j�1

2
Þ: ð15Þ
Using the definition of E and (15) in (12c), and using (12a), we have the following equation for internal energy
ðaqeÞnþ1
j ¼ ðaqeÞnj �

Dt
Dx

u ðaqeÞ�jþ1
2
� ðaqeÞ�j�1

2

h i
: ð16Þ
Multiplying (12a) by the parameter q in the (5a) and subtracting the result from (16), we obtain
ðaqðe� qÞÞnþ1
j ¼ ðaqðe� qÞÞnj �

Dt
Dx

u ðaqðe� qÞÞ�jþ1
2
� ðaqðe� qÞÞ�j�1

2

h i
: ð17Þ
From the EOS (5a) and uniformity of pressure (13), we see that
qðe� qÞ ¼ pþ cp
c� 1

¼ const: ð18Þ
Thus from (17) with (18), we get by taking out the constant and using (14)
anþ1
j ¼ an

j � ðuIÞnj
Dt
Dx

a�jþ1
2
� a�j�1

2

� �
: ð19Þ
This equation provides a discretization for the volume fraction equation.
For the Riemann values the approximate solvers HLL, HLLC [38] and VFRoe [12] are used. For the seven-equation model

(1) the HLL solver is introduced in [27] and the VFRoe solver is considered in [3]. In the following section we present the HLLC
solver.
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3.1.1. HLLC-type solver
The intercell flux of the HLLC Riemann solver is given by, see Toro [38]
FHLLC
jþ1

2
¼

fðuLÞ; 0 6 sL;

fðu�LÞ ¼ fðuLÞ þ sLðu�L � uLÞ; sL 6 0 6 s�;
fðu�RÞ ¼ fðuRÞ þ sRðu�R � uRÞ; s� 6 0 6 sR;

fðuRÞ; 0 P sR:

8>>><>>>:

where ’L’ and ’R’ refer to the left and right states of a cell boundary respectively.

Following the Davis estimates [8] the wave speeds can be taken as
sL ¼min u1L � c1L; u2L � c2L;u1R � c1R; u2R � c2Rf g;
sR ¼max u1L þ c1L;u2L þ c2L; u1R þ c1R;u2R þ c2Rf g:
Following Toro [38] for a single phase, the vectors u�L and u�R can be given as
u�K ¼

a1Kq1K
sK�u1K
sK�s�

a1Kq1K
sK�u1K
sK�s�

s�

a1Kq1K
sK�u1K
sK�s�

E1K þ ðs� � u1KÞ s� þ p1K
q1K ðsK�u1K Þ

� �� �
a2Kq2K

sK�u2K
sK�s�

a2Kq2K
sK�u2K
sK�s�

s�

a2Kq2K
sK�u2K
sK�s�

E2K þ ðs� � u2KÞ s� þ p2K
q2K ðsK�u2K Þ

� �� �

2666666666666664

3777777777777775
; K ¼ L;R:
We take the speed s� as in [38] but with mixture values for pressure, velocity and density, i.e.
s� ¼
pR � pL þ qLuLðsL � uLÞ � qRuRðsR � uRÞ

qLðsL � uLÞ � qRðsR � uRÞ
where q ¼ a1q1 þ a2q2; p ¼ a1p1 þ a2p2 and u ¼ a1q1u1þa2q2u2
q .

We refer to the mathematical properties of the model (1) in Appendix A. Consider the eigenvectors (A.4) and (A.5) for the
2- to 7-fields. It is clear that the function uðWÞ ¼ a1 is a Riemann invariant for all 2- to 7-characteristic fields. This means
that a1 is constant across all rarefaction waves of the 2- to 7-fields. Also note that the action of the non-conservative terms is
reflected in the 1-field which corresponds to the eigenvalue k1 ¼ uI . Moreover, this eigenvalue comes from the evolutionary
equation for a1. Considering these observations we will assume that a1 changes only across s�, this means that
a1�K ¼ a1K ; K ¼ L;R:
3.1.2. Extension to the second-order
To achieve second-order accuracy we use the MUSCL method, where MUSCL stands for Monotone Upstream-centered

Scheme for Conservation Laws. In the following we will give a summary of this method, and for details we refer to Toro
[38]. This method has three steps, they are

� Data reconstruction: The primitive variables on the cell boundary are extrapolated as
W�
jþ1

2
¼Wn

j þ
1
2

dj; Wþ
j�1

2
¼Wn

j �
1
2

dj:
Performing this step in primitive variables ensures the preservation of uniformity of pressure and velocity, which is an essen-
tial issue in the discretization of the model.

The limited slope dj is taken as
dj ¼
max 0;minðbdj�1

2
;djþ1

2
Þ;minðdj�1

2
;bdjþ1

2
Þ

n o
; djþ1

2
> 0

min 0;maxðbdj�1
2
;djþ1

2
Þ;maxðdj�1

2
; bdjþ1

2
Þ

n o
; djþ1

2
< 0

8><>:

where
dj�1
2
¼Wn

j �Wn
j�1; djþ1

2
¼Wn

jþ1 �Wn
j :
For particular values of b, the value b ¼ 1 corresponds to the minmod limiter and b ¼ 2 corresponds to the superbee limiter.
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j	1

2
are evolved by a time Dt
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cWþ
j�1

2
¼Wþ

j�1
2
� Dt

2Dx
AðWjÞðW�

jþ1
2
�Wþ

j�1
2
Þ;

cW�
jþ1

2
¼W�

jþ1
2
� Dt

2Dx
AðWjÞðW�

jþ1
2
�Wþ

j�1
2
Þ:
� Solution of the Riemann problem: We rewrite cW�
j�1

2
in conservative form, and solve the Riemann problem with the piecewise

constant data ðbU�
jþ1

2
; bUþ

jþ1
2
Þ.
3.2. Source and relaxation operators

According to the Strang splitting (9), to take into account for source and relaxation terms we have to solve the following
system of ordinary differential equations (ODE).
dU
dt
¼ S ð20Þ
where U ¼ ða1;a1q1;a1q1u1;a1q1E1;a2q2;a2q2u2;a2q2E2ÞT . The source vector S can be decomposed as the sum
S ¼ SV þ SP þ SThermal;
where SV and SP are associated with velocity and pressure relaxation terms respectively. The vector SThermal represents the
thermal relaxation terms that include the temperature and Gibbs free energy relaxation terms that have to be modeled.
The mechanical relaxation terms SV and SP are given by
SV ¼

0
0

kðu2 � u1Þ
kuIðu2 � u1Þ

0
�kðu2 � u1Þ
�kuIðu2 � u1Þ

2666666666664

3777777777775
; and SP ¼

lðp1 � p2Þ
0
0

lpIðp2 � p1Þ
0
0

�lpIðp2 � p1Þ

2666666666664

3777777777775
:

The system (20) is solved by successive integrations considering each one of the source vectors alone.
The relaxation time scales depend on many parameters of the fluids and also possibly on the process, i.e. evaporation,

condensation, combustion, etc. For example the rate of the pressure relaxation l depends on the compressibility of each fluid
besides the nature of each fluid and the two-phase mixture topology [27,31]. The velocity relaxation time may be greater
than that required for the pressure relaxation, since the velocity relaxation depends on the fluid viscosity which has slow
effects compared to others, also it depends on the pressure relaxation which is in general fast compared to the longitudinal
wave propagation [27,31]. The interface conditions, for the interface that separates two pure fluids, impose an equality for
pressure and velocity. In many physical situations it is reasonable to assume that the pressure and velocity relax instanta-
neously. Such an assumption also fulfills the interface conditions. Some estimations in certain situations show that the time
scale of the velocity relaxation and pressure relaxation are of the same order of magnitude [7,26].

The temperature relaxation depends on the thermal conductivity of the fluids. Where this conduction occurs due to the
collisions of the molecules of the fluids. To reach temperature equilibrium a large number of collisions is required. This in
general has long characteristic time compared to the pressure and velocity relaxation.

The Gibbs free energy relaxation parameter depends on local chemical relaxation [33]. And this is a slow process com-
pared with other processes that related to the pressure, velocity and temperature relaxation at the interfaces. Therefore
the relaxation time of the Gibbs free energy relaxation is the longest compared to other relaxation times.

In this paper we assume that the relaxation times are very close to zero i.e. instantaneous relaxations. This assumption is
justified for the pressure and the velocity in the entire flow field. For the temperature and the Gibbs free energy this assump-
tion is considered only at the interface where the heat and mass transfer occur, indeed this assumption is standard at equi-
librium interfaces when mass transfer occurs [33]. The assumption of instantaneous relaxations means that all relaxation
parameters are taken to be infinite and this makes the model free of parameters.

Moreover we assume that the relaxation time of the mechanical variables is much smaller than that of the thermal vari-
ables. We assume that the mechanical variables relax very fast to equilibrium values, and they will stay in equilibrium dur-
ing the thermal relaxation. Also we assume that the temperature relaxes much faster than the Gibbs free energy.

For the velocity and pressure relaxation we use the same procedures as Saurel and Abgrall [27], other procedures for pres-
sure relaxation also are possible, see [17,18,31]. For the thermal relaxation terms we modeled them depending on the obser-
vation of the differences between relaxation times for various variables, they are the subject of the next section.
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4. Thermal relaxation, modeling of heat and mass transfer

At each time step after the procedures for the velocity and pressure relaxations we have a two-phase mixture in mechan-
ical equilibrium, but each phase has its own temperature and its own Gibbs free energy. In this section we will insert the
effect of heat and mass transfer that take place at the interface.

To locate the interface we use the ideas of Saurel et al. [33], that the cell is filled with pure fluid when its volume fraction
is close to 1, say ð1� �Þ, with � ¼ 10�6. The interface corresponds to mixture cells when the volume fraction ranges between
�� and 1� ��, with �� ¼ 10�4. The value of �� has to be chosen larger than the value of � to ensure that phase transitions occur
only in the interfacial zone, for a discussion on this point see [33]. Also mass transfer is allowed if the liquid is metastable, i.e.
Tl > TsatðpequiÞ. For the computation of the curve T ¼ TsatðpequiÞ see Appendix C.

According to our assumption that the mechanical relaxation time is very small compared with the thermal relaxation
time we may also assume that the mechanical quantities will stay in equilibrium during the thermal relaxation. Therefore,
our modeled terms will keep this assumption.

Also we assume that the temperature relaxes much faster than the Gibbs free energy. So we will split the thermal terms
into two parts. One is related to the heat transfer SQ and the other is related to the mass transfer Sm, i.e.
SThermal ¼ SQ þ Sm:
The system of ODE (20) is solved for the temperature relaxation then for the Gibbs free energy relaxation. During the Gibbs
free energy relaxation we assume that the temperature will stay in equilibrium, and our modeled terms will keep this
condition.

4.1. Heat transfer and temperature relaxation

The heat transfer is added through the temperature relaxation terms. In the model (1) the heat transfer term Q initially
appears in the energy equations. As the pressure equilibrium is maintained through the temperature relaxation we will mod-
ify the volume fraction equation to include the effect of the heat transfer in a way to be able to keep an equilibrium pressure
during the temperature relaxation process. Therefore the heat source vector SQ is modeled as
SQ ¼
Q
j
;0;0;Q ;0; 0;�Q

� �T

; ð21Þ
where the new variable j has to be determined.
Then to take into account for the heat transfer we have to solve the following system of ODE
dU
dt
¼ SQ : ð22Þ
To find the expression for j we will use the assumption that the pressure will stay in equilibrium, and to do that we assume
@p1

@t
¼ @p2

@t
: ð23Þ
4.1.1. Determination of j
Consider the components of the system (22) for phase ”1”
@a1

@t
¼ Q

j
; ð24aÞ

@a1q1

@t
¼ 0; ð24bÞ

@a1q1u1

@t
¼ 0; ð24cÞ

@a1q1E1

@t
¼ Q : ð24dÞ
From (24a) and (24d) we obtain
@a1q1E1

@t
¼ j

@a1

@t
: ð25Þ
Using the definition of E1, (24b) and (24c) with (25) we have
a1q1
@e1

@t
¼ j

@a1

@t
: ð26Þ



A. Zein et al. / Journal of Computational Physics 229 (2010) 2964–2998 2973
The internal energy e1 is expressed in terms of p1 and q1, i.e. e1 ¼ e1ðp1;q1Þ. Differentiating it with respect to t and substi-
tuting the result in (26), we obtain
a1q1
@e1

@p1

� �
q1

@p1

@t
þ a1q1

@e1

@q1

� �
p1

@q1

@t
¼ j

@a1

@t
: ð27Þ
From (24b) we have a1
@q1
@t ¼ �q1

@a1
@t . Using this in (27) we get
a1q1
@e1

@p1

� �
q1

@p1

@t
� q2

1
@e1

@q1

� �
p1

@a1

@t
¼ j

@a1

@t
;

or
@p1

@t
¼

jþ q2
1

@e1
@q1

� �
p1

a1q1
@e1
@p1

� �
q1

@a1

@t
: ð28Þ
A similar equation can be attained for p2
@p2

@t
¼ �

jþ q2
2

@e2
@q2

� �
p2

a2q2
@e2
@p2

� �
q2

@a1

@t
: ð29Þ
Using (28) and (29) in the condition (23) and after some manipulations we have the following expression for j
j ¼
q1c2

1
a1
þ q2c2

2
a2

C1
a1
þ C2

a2

�
C1
a1

p1 þ C2
a2

p2
C1
a1
þ C2

a2

: ð30Þ
Here Ck denotes the Grüneisen coefficient of phase k which is given as
Ck ¼
1
qk

@pk

@ek

� �
qk

; k ¼ 1;2: ð31Þ
Since the heat transfer relaxation is considered when pressure equilibrium is maintained, i.e. p1 ¼ p2 ¼ peq, the second term
in the right hand side of (30) is equivalent to the equilibrium pressure. Thus we have
j ¼
q1c2

1
a1
þ q2c2

2
a2

C1
a1
þ C2

a2

� peq: ð32Þ
It is interesting to note that the first term on the right hand side of (32) is exactly the same term that appears in a similar
manner with heat transfer that is given in the model of Saurel et al. [33].

In the context of the SG-EOS (5), we have the following expression for j
j ¼
p1þc1p1

a1
þ p2þc2p2

a2
c1�1
a1
þ c2�1

a2

:

4.1.2. Mixture entropy
Now let us consider the equation of the mixture entropy. If we follow the same method in Section 2.2 for the model with

new modifications, we have
a1q1T1
Ds1

Dt
¼ ð1þ p1

j
ÞQ ;ð33aÞ

a2q2T2
Ds2

Dt
¼ �ð1þ p2

j
ÞQ :ð33bÞ
After the mechanical relaxation p1 and p2 are in equilibrium, so p1 ¼ p2 ¼ peq.
Combining the two equations in (33) we get the following equation for the mixture entropy
@qs
@t
þ @qsu

@x
¼ ð1þ

peq

j
ÞQ T2 � T1

T1T2

� �
;

where qs ¼ a1q1s1 þ a2q2s2 and u ¼ u1 ¼ u2 is the equilibrium velocity.
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The heat transfer Q is modeled as Q ¼ hðT2 � T1Þ, where h > 0 is the temperature relaxation parameter. Since j is always
positive the mixture entropy satisfies the second law of thermodynamics, i.e.
@qs
@t
þ @qsu

@x
¼ hð1þ

peq

j
Þ ðT2 � T1Þ2

T1T2
P 0:
In this work the parameter h is assumed to tend to infinity, i.e. the temperature relaxes to a common value instantaneously at
any time. This assumption is considered at the interface only.

4.1.3. Temperature relaxation
Now to solve the system (24) with h!1, we proceed as for the pressure relaxation in [27]. It is clear that a1q1 and

a1q1u1, therefore also u1 stay constant through the relaxation process.
From the system (24) we obtain (26) for the internal energy, which can be rewritten as
@e1

@t
¼ j

a1q1

@a1

@t
:

Integrating this equation, we obtain the following approximation
e�1 ¼ e0
1 þ

�j
a0

1q0
1

ða�1 � a0
1Þ ð34Þ
where ’0’ and ’*’ refer to the states before and after the relaxation process respectively and �j is the mean interfacial value
between the states a0

1;q0
1; e

0
1

� �
and a�1;q�1; e�1

� �
. Also, we can proceed in the same way to get a similar result for phase ’2’.

We consider (34) as an equation for e1 as a function of a1, i.e. e1 ¼ e0
1 þ �j

a0
1q

0
1
ða1 � a0

1Þ, and from (24b) q1 ¼ const
a1

. And anal-

ogously for the other phase, since a2 ¼ 1� a1 we have only one variable a1 in the relation
fTða1Þ ¼ T2ðe2;q2Þ � T1ðe1;q1Þ ¼ 0: ð35Þ
Our aim now is to find an a1 that satisfies the equilibrium condition (35). The variable �j can be approximated as �j ¼ ~jþj0

2 ,
where ~j is estimated at the new state resulting from iterative procedure for solving fTða1Þ ¼ 0.

In this way we get the temperature equilibrium, while keeping the mechanical equilibrium.

4.2. Mass transfer and Gibbs free energy relaxation

Analogous to the heat transfer, the mass transfer is also modeled through relaxation terms. As mentioned we assume that
the temperature relaxation time is very small compared with the Gibbs free energy relaxation time, and so we will consider
that the mechanical equilibrium and the equilibrium of temperature will be satisfied through the Gibbs free energy
relaxation.

To take into account the mass transfer we have to solve the following system of ODE
dU
dt
¼ Sm: ð36Þ
Our aim now is to model the mass transfer source vector Sm. The literature on averaging techniques shows that the mass
transfer appears in the model as a mass rate in the interfacial momentum and in the interfacial energy, see [9,10,14]. But
the expressions for these terms are unknown. Here we will insert these terms in the model as they appear by averaging,
but we will use some assumptions to find certain expressions for these terms.

Let us assume that Sm is given in the model as
@a1

@t
¼

_m
.
; ð37aÞ

@a1q1

@t
¼ _m; ð37bÞ

@a1q1u1

@t
¼ uI _m; ð37cÞ

@a1q1E1

@t
¼ ei þ

u2
I

2

� �
_m; ð37dÞ

@a2q2

@t
¼ � _m; ð37eÞ

@a2q2u2

@t
¼ �uI _m; ð37fÞ

@a2q2E2

@t
¼ � ei þ

u2
I

2

� �
_m: ð37gÞ
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The new variables . and ei have to be determined. According to our assumption the relaxation time of the Gibbs free energy
is much larger than other relaxation times, so during the Gibbs free energy relaxation process we will assume that the pres-
sure and temperature stay in equilibrium. Thus to find the new variables we use the following assumptions
@p1

@t
¼ @p2

@t
; ð38aÞ

@T1

@t
¼ @T2

@t
: ð38bÞ
4.2.1. Determination of ei and .
Since the model (37) is solved after the mechanical relaxation we have u1 ¼ u2 ¼ uI . From (37b) and (37c) the velocity u1

is constant through the relaxation procedure, also from (37e) and (37f) the velocity u2 is constant.
Using the Eqs. (37a)–(37d) and the definition of E1, we get
a1q1
@e1

@t
¼ ðei � e1Þ _m: ð39Þ
Differentiate e1ðp1;q1Þ with respect to t and substitute the result in (39). We obtain
a1q1
@e1

@p1

� �
q1

@p1

@t
þ a1q1

@e1

@q1

� �
p1

@q1

@t
¼ .ðei � e1Þ

@a1

@t
: ð40Þ
From (37a) and (37b), we get
a1
@q1

@t
¼ ð.� q1Þ

@a1

@t
: ð41Þ
Using this in (40), we have
a1q1
@e1

@p1

� �
q1

@p1

@t
þ q1ð.� q1Þ

@e1

@q1

� �
p1

@a1

@t
¼ .ðei � e1Þ

@a1

@t
: ð42Þ
This leads to
@p1

@t
¼ C1

a1
�q1ð.� q1Þ

@e1

@q1

� �
p1

þ .ðei � e1Þ
 !

@a1

@t
: ð43Þ
In a similar way we have an equation for p2
@p2

@t
¼ �C2

a2
�q2ð.� q2Þ

@e2

@q2

� �
p2

þ .ðei � e2Þ
 !

@a1

@t
: ð44Þ
By the condition (38a) with (43) and (44), we obtain
C1

a1
�q1ð.� q1Þ

@e1

@q1

� �
p1

þ .ðei � e1Þ
 !

¼ �C2

a2
�q2ð.� q2Þ

@e2

@q2

� �
p2

þ .ðei � e2Þ
 !

: ð45Þ
On the other hand, e1 can be written in terms of T1 and q1, i.e. e1 ¼ e1ðT1;q1Þ. Differentiating it with respect to t, substituting
the result in (39) and using (41), we get
@T1

@t
¼ 1

a1q1
@e1
@T1

� �
q1

�q1ð.� q1Þ
@e1

@q1

� �
T1

þ .ðei � e1Þ
 !

@a1

@t
:

But ð@e1
@T1
Þq1
¼ Cv1, the specific heat at constant volume. Thus
@T1

@t
¼ 1

a1q1Cv1
�q1ð.� q1Þ

@e1

@q1

� �
T1

þ .ðei � e1Þ
 !

@a1

@t
: ð46Þ
A similar equation can be attained for T2
@T2

@t
¼ �1

a2q2Cv2
�q2ð.� q2Þ

@e2

@q2

� �
T2

þ .ðei � e2Þ
 !

@a1

@t
: ð47Þ
By the condition (38b) with (46) and (47), we get
1
a1q1Cv1

�q1ð.� q1Þ
@e1

@q1

� �
T1

þ .ðei � e1Þ
 !

¼ �1
a2q2Cv2

�q2ð.� q2Þ
@e2

@q2

� �
T2

þ .ðei � e2Þ
 !

: ð48Þ
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It is clear now that (45) and (48) are two equations for the two unknowns ei and .. After some manipulations, we get from
these equations
. ¼

/
q1c2

1
a1
þ q2c2

2
a2

� �
� / C1

a1
p1 þ C2

a2
p2

� �
þ w

q2
1

@e1
@q1

� �
T1

a1q1Cv1
þ

q2
2

@e2
@q2

� �
T2

a2q2Cv2

0B@
1CA

/
c2

1
a1
þ c2

2
a2

� �
� / C1

a1
h1 þ C2

a2
h2

� �
þ w

e1þq1
@e1
@q1

� �
T1

a1q1Cv1
þ

e2þq2
@e2
@q2

� �
T2

a2q2Cv2

0B@
1CA
; ð49aÞ

ei ¼

e1þq1
@e1
@q1

� �
T1

a1q1Cv1
þ

e2þq2
@e2
@q2

� �
T2

a2q2Cv2

/
�

q2
1

@e1
@q1

� �
T1

a1q1Cv1
þ

q2
2

@e2
@q2

� �
T2

a2q2Cv2

./
ð49bÞ
where / ¼ 1
a1q1Cv1

þ 1
a2q2Cv2

;w ¼ C1
a1
þ C2

a2
and hk ¼ ek þ pk

qk
is the enthalpy for phase k.

Consider the expression of . given by (49a), the terms that are multiplied by w come from the temperature equilibrium
condition. While the terms that are multiplied by / come from the pressure equilibrium condition. It is interesting to see that

a similar expression is given in the Saurel et al. [33] by qI ¼ ð
q1c2

1
a1
þ q2c2

2
a2
Þ=ðc

2
1

a1
þ c2

2
a2
Þ, see relation (5.9) in [33]. The term qI in [33]

appears with the volume fraction equation in the same way as our variable ., see volume fraction Eq. (37a). It is obvious that
all terms of qI appear in the expression of .. Note also that the terms are related to the equilibrium of the temperature in the
variable . do not appear in the variable qI , this is due to the fact that qI uses the pressure equilibrium with other assump-
tions, but it does not use the temperature equilibrium condition.

In the context of the SG-EOS we have the following expressions for . and ei,
. ¼
/ p1þc1p1

a1
þ p2þc2p2

a2

� �
� w p1

a1q1Cv1
þ p2

a2q2Cv2

� �
�/ ðc1�1Þq1

a1
þ ðc2�1Þq2

a2

� �
þ w

e1�
p1
q1

a1q1Cv1
þ

e2�
p2
q2

a2q2Cv2

� � ;

ei ¼

e1�
p1
q1

a1q1Cv1
þ

e2�
p2
q2

a2q2Cv2

� �
/

þ
p1

a1q1Cv1
þ p2

a2q2Cv2

� �
./

:

Note that Ck ¼ ck � 1; k ¼ 1;2, for the SG-EOS.

4.2.2. Mixture entropy
Now we consider the equation of mixture entropy. If we follow the same argument as in Section 2.2, under the mechan-

ical equilibrium and temperature equilibrium, we have
a1q1T1
Ds1

Dt
¼ ðei þ

p1

.
Þ _m� ðe1 þ

peq

q1
Þ _m; ð51aÞ

a2q2T2
Ds2

Dt
¼ �ðei þ

p2

.
Þ _mþ ðe2 þ

peq

q2
Þ _m: ð51bÞ
Using the mass Eqs. (37b) and (37e) with system (51), we have
T1ð
@a1q1s1

@t
þ @a1q1s1u1

@x
Þ ¼ ðei þ

peq

.
Þ _m� ðe1 þ

p1

q1
� T1s1Þ _m; ð52aÞ

T2ð
@a2q2s2

@t
þ @a2q2s2u2

@x
Þ ¼ �ðei þ

peq

.
Þ _mþ ðe2 þ

p2

q2
� T2s2Þ _m: ð52bÞ
Note that the quantity ek þ pk
qk
� Tksk, k ¼ 1;2 is the Gibbs free energy. Let us denote gk for the Gibbs free energy.

Add the two entropy equations in (52) after division by temperatures, we obtain
@qs
@t
þ @qsu

@x
¼ ðei þ

peq

.
Þ _m

T2 � T1

T1T2

� �
þ _m

g2

T2
� g1

T1

� �
: ð53Þ
Since the temperatures are in equilibrium by the temperature relaxation the first term in the right hand side of (53) vanishes
and the mass transfer is modeled as _m ¼ mðg2 � g1Þ, where m > 0 is the relaxation parameter of the Gibbs free energy. Thus
the mixture entropy satisfies the second law of thermodynamics, i.e.
@qs
@t
þ @qsu

@x
¼ m
ðg2 � g1Þ

2

Teq
P 0; ð54Þ
where Teq is the equilibrium temperature, T1 ¼ T2 ¼ Teq.
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In this work we assume that the parameter m tends to infinity. This means that the Gibbs free energy relaxes instanta-
neously to equilibrium. This is considered at the interface only.

4.2.3. Free Gibbs energy relaxation, procedure I
Now, we will solve the system (37) when m!1, this means that the mass transfer occurs until the Gibbs free energies

reach equilibrium. Thus we have to find the value of _m that makes the difference of the Gibbs free energies at the end of the
time step is zero. To do that we use the equations for the rate of change of Gibbs free energies in terms of _m. Assume that
@g1

@t
¼ A _m; and

@g2

@t
¼ B _m: ð55Þ
Using the SG-EOS, A and B can be given as
A ¼ c1Cv1 � Cv1 � s1

a1q1.Cv1
ðe1 � q1Þð.� q1Þ þ .ðei � e1Þ½ �

þ T1ðs1 þ c1Cv1Þ �
p1

q1
� ðe1 � q1Þ

� 	
ð.� q1Þ
a1q1.

;

B ¼ � c2Cv2 � Cv2 � s2

a2q2.Cv2
ðe2 � q2Þð.� q2Þ þ .ðei � e2Þ½ � � T2ðs2 þ c2Cv2Þ �

p2

q2
� ðe2 � q2Þ

� 	
ð.� q2Þ
a2q2.

:

From (55) we get
@Dg
@t
¼ @ðg1 � g2Þ

@t
¼ ðA� BÞ _m:
The simplest numerical approximation of this equation is
ðDgÞnþ1 � ðDgÞn

Dt
¼ ðA� BÞnð _mÞn:
To satisfy the equilibrium condition for the Gibbs free energies we require ðDgÞnþ1 ¼ 0. Thus the mass transfer can be approx-
imated as
ð _mÞn ¼ �ðDgÞn

DtðA� BÞn
:

Using this approximation for ð _mÞn we can integrate the system (37). But we may face the problem of loosing the positivity of
the volume fraction. Therefore a limitation on the value _m=. must be used. We take the following procedure from [33] which
we cite for the sake of completeness. Assume that Sa1 ¼ _m=.. Then the maximum admissible source term for the volume
fraction evolution in order to preserve the positivity is given as
Smax;a1 ¼
1�a1

Dt ; Sa1 > 0;
� a1

Dt ; otherwise:

(
ð56Þ
Then, if j Smax;a1 j>j Sa1 j, the numerical integration for the system (37) can be done with the hydrodynamics time step which
is restricted by the CFL number. Otherwise, the integration time step has to be reduced. The ratio Ra1 ¼ Smax;a1=Sa1 is com-
puted and the system (37) is integrated over a fraction of the time step, typically Dtm ¼ Ra1 Dt=2. Successive point integra-
tions are done to cover the complete hydrodynamic step.

The above procedure is cheap, fast and easy to implement. But this procedure is not an instantaneous one. This means
that the equilibrium of the Gibbs free energy is reached very fast after a very short time but not instantaneously. Hereafter
we propose another method for the Gibbs free energy relaxation which is an instantaneous relaxation procedure.

4.2.4. Free Gibbs energy relaxation, procedure II
By considering (37b) and (37c) with the fact that the velocities are in equilibrium we get @u1

@t ¼ 0. Using this with (37c) and
(37d) we get
@a1q1e1

@t
¼ ei _m: ð57Þ
From (57) with (37a) we have
@a1q1e1

@t
¼ .ei

@a1

@t
: ð58Þ
Integrating (58) we get the following approximation
ða1q1e1Þ� ¼ ða1q1e1Þ0 þ .ei a�1 � a0
1

� �
; ð59Þ
where .ei is the mean interfacial value between the states ða0
1;q0

1; e
0
1Þ and ða�1;q�1; e�1Þ.
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From (37a) and (37b) we have
@a1q1

@t
¼ .

@a1

@t
:

Integrating this equation we get
ða1q1Þ
� ¼ ða1q1Þ

0 þ �.ða�1 � a0
1Þ; ð60Þ
where �. is the mean interfacial value between the states ða0
1;q0

1; e
0
1Þ and ða�1;q�1; e�1Þ.

In the same way we have the following equations for phase ’2’
ða2q2e2Þ� ¼ ða2q2e2Þ0 � .eiða�1 � a0
1Þ; ð61Þ

ða2q2Þ
� ¼ ða2q2Þ

0 � �.ða�1 � a0
1Þ: ð62Þ
Eq. (60) shows that the density q1 is a function of a1. Using this fact with (59) we conclude that e1 is also a function of a1.
Analogously q2 and e2 are functions of a1. We aim now to find the a1 which satisfies the equilibrium condition
fgða1Þ ¼ g2ðe2;q2Þ � g1ðe1;q1Þ ¼ 0: ð63Þ
The Eq. (63) can be solved by any iterative procedure. In this way the Gibbs free energy equilibrium is reached
instantaneously.

This procedure for the Gibbs free energy relaxation is more expensive since an iterative method is used, but this method
has a better resolution than the previous procedure.

4.3. The final model

In result of this section, the full model with heat and mass transfer is given as
@a1

@t
þ uI

@a1

@x
¼ lðp1 � p2Þ þ

Q
j
þ

_m
.
; ð64aÞ

@a1q1

@t
þ @ða1q1u1Þ

@x
¼ _m; ð64bÞ

@a1q1u1

@t
þ @ða1q1u2

1 þ a1p1Þ
@x

¼ pI
@a1

@x
þ kðu2 � u1Þ þ uI _m; ð64cÞ

@a1q1E1

@t
þ @ða1ðq1E1 þ p1Þu1Þ

@x
¼ pIuI

@a1

@x
þ lpIðp2 � p1Þ þ kuIðu2 � u1Þ þ Q þ ei þ

u2
I

2

� �
_m; ð64dÞ

@a2q2

@t
þ @ða2q2u2Þ

@x
¼ � _m; ð64eÞ

@a2q2u2

@t
þ @ða2q2u2

2 þ a2p2Þ
@x

¼ �pI
@a1

@x
� kðu2 � u1Þ � uI _m; ð64fÞ

@a2q2E2

@t
þ @ða2ðq2E2 þ p2Þu2Þ

@x
¼ �pIuI

@a1

@x
� lpIðp2 � p1Þ � kuIðu2 � u1Þ � Q � ei þ

u2
I

2

� �
_m; ð64gÞ
where
Q ¼ hðT2 � T1Þ;
_m ¼ mðg2 � g1Þ:
The variables j;. and ei are given in (30), (49a) and (49b) respectively. All relaxation parameters k;l; h and m are assumed to
be infinite. The model (64) is solved by the Strang splitting (9). The operator Ls approximates the solution of the ordinary
differential system (20). This system is solved by successive integrations considering separately each one of the source vec-
tors that are related to the relaxation of the velocity, pressure, temperature and Gibbs free energy. The order of the succes-
sive integrations are essential for our model. They are done firstly for the velocity relaxation, then for the pressure relaxation,
after for the temperature relaxation and finally for the Gibbs free energy relaxation. The velocity and the pressure relaxation
are performed for the entire flow field while the temperature and the Gibbs free energy relaxation are used at the interface
only. For the hyperbolic operator Lh a Godunov-type scheme is used.
5. Modeling phase transition for the six-equation model

The six-equation model with a single velocity is obtained from the seven-equation model in the asymptotic limit of zero
velocity relaxation time, see Kapila et al. [15]. This model, as the seven-equation model, has more attractive advantages over
the five-equation model for the numerical computations. Also this model is less expensive than the seven-equation model.
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In this section we will insert the heat and mass transfer in the six-equation model by the relaxation effects. The above
assumptions and ideas for the seven-equation model will be used, i.e. we will assume that the pressure relaxes much faster
than the thermal properties and the temperature relaxation time is much smaller than that of the Gibbs free energy.

The six-equation model without heat and mass transfer can be written as
@a1

@t
þ u

@a1

@x
¼ lðp1 � p2Þ; ð65aÞ

@a1q1

@t
þ @ða1q1uÞ

@x
¼ 0; ð65bÞ

@a2q2

@t
þ @ða2q2uÞ

@x
¼ 0; ð65cÞ

@qu
@t
þ @ðqu2 þ a1p1 þ a2p2Þ

@x
¼ 0; ð65dÞ

@a1q1e1

@t
þ @a1q1e1u

@x
þ a1p1

@u
@x
¼ lpIðp2 � p1Þ; ð65eÞ

@a2q2e2

@t
þ @a2q2e2u

@x
þ a2p2

@u
@x
¼ �lpIðp2 � p1Þ: ð65fÞ
In this section we use the relation (3) for the interfacial pressure pI .
We apply the idea of Saurel et al. [34] that during the numerical computations we use the mixture energy equation to

correct the thermodynamic state predicted by the two non-conservative internal energy equations. By summing the two
internal energy equations and using the mass and momentum equations we obtain the mixture energy equation
@ qeþ 1
2 qu2

� �
@t

þ
@u qeþ 1

2 qu2 þ a1p1 þ a2p2

� �
@x

¼ 0: ð66Þ
where q ¼ a1q1 þ a2q2 and qe ¼ a1q1e1 þ a2q2e2.

5.1. Mathematical properties of the six-equation model

In terms of the primitive variables W ¼ ða1;q1;q2;u; p1; p2Þ, the model (65) can be expressed as
@W
@t
þ A

@W
@x
¼ S ð67Þ
where the matrix A is given as
A ¼

u 0 0 0 0 0
0 u 0 q1 0 0
0 0 u q2 0 0

p1�p2
q 0 0 u a1

q
1�a1

q

0 0 0 q1c2
1 u 0

0 0 0 q2c2
2 0 u

2666666664

3777777775
:

The matrix A has six eigenvalues, only three of them are distinct
k1 ¼ k2 ¼ k3 ¼ k4 ¼ u;

k5 ¼ uþ c;

k6 ¼ u� c:

ð68Þ
Here c is the mixture sound speed and is expressed as
c2 ¼ a1q1

q
c2

1 þ
a2q2

q
c2

2:
The sound speeds ck; k ¼ 1;2, are defined by (4).
The corresponding right eigenvectors are
r1 ¼

0
0
0
0
� a2

a1

1

266666664

377777775; r2 ¼

0
0
1
0
0
0

266666664

377777775; r3 ¼

0
1
0
0
0
0

266666664

377777775; r4 ¼

1
0
0
0

p2�p1
a1

0

266666664

377777775; r5 ¼

0
1
q2
q1
c
q1

c2
1

q2
q1

c2
2

2666666664

3777777775
; r6 ¼

0
1
q2
q1

� c
q1

c2
1

q2
q1

c2
2

2666666664

3777777775
: ð69Þ
Therefore, the system (65) is hyperbolic, but not strictly hyperbolic.
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5.2. Numerical method

To take into account the non-differential source terms the Strang splitting (9) is used. In this case the vector of conser-
vative variables U is given as
U ¼ a1;a1q1;a2q2;qu;a1q1e1;a2q2e2;qeþ 1
2
qu2

� �T

:

The last element in U corresponds to the redundant Eq. (66).
For the hyperbolic part of the system a Godunov-type scheme is used that takes into account the discretization of the

non-conservative terms.
The source vector S is associated with the relaxation terms and is decomposed as
S ¼ SP þ SQ þ Sm;
where SP ¼ ðlðp1 � p2Þ;0;0;0;lpIðp2 � p1Þ;�lpIðp2 � p1Þ;0Þ
T represents the pressure relaxation terms. The vectors SQ and

Sm are associated with the heat and mass transfer relaxation terms respectively, they will be considered in the next section.
The HLL, HLLC and VFRoe Riemann solvers can be used. For the HLL solver we refer to the book of Toro [38], it is detailed

in the context of Euler equations there but it is easily modified to the six-equation model. The HLLC solver was introduced
above in Section 3.1.1 for the seven-equation model and is detailed in Ref. [34] for the six-equation model. The VFRoe solver
[12] is explained in the following section in the context of the six-equation model.
5.2.1. VFRoe-type solver
Consider the Riemann problem consists of the homogenous part of the system (67)
@W
@t
þ A

@W
@x
¼ 0;
with the initial conditions
Wðx;0Þ ¼
WL; x < 0;
WR; x > 0:




The Jacobian matrix AðWÞ is calculated in the average state
W ¼WL þWR

2
:

The intermediate state in the solution of the Riemann problem is
W� ¼WL þ
X
ki<0

airi;
where the eigenvalues ki and the corresponding eigenvectors ri are given by (68) and (69).
The coefficients ai are determined by
WR �WL ¼
X6

i¼1

airi;
Indeed, they are given by the following expressions
a4 ¼ D1;

a1 ¼ �
q2
q1

c2
2D5 � c2

1D6 �
q2c2

2a4ðp2�p1Þ
a1q1

a2q2
a1q1

c2
2 þ c2

1

;

a5 ¼
q1q2c2

2D4 þ q1cD6 � q1ca1

2q2cc2
2

;

a6 ¼ a5 �
q1

c
D4;

a2 ¼ D3 �
q2

q1
ða5 þ a6Þ;

a3 ¼ D2 � a5 � a6;
where Dk is the kth component of WR �WL ¼ ðD1; . . . ;D6ÞT .
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5.2.2. Godunov-type method
The equations that are written in a conservative form are discretized by the conventional Godunov scheme
unþ1
j ¼ un

j �
Dt
Dx
½fðu�ðun

j ;u
n
jþ1ÞÞ � fðu�ðun

j�1;u
n
j ÞÞ�;
where
u ¼ ða1q1;a2q2;qu;qeþ 1
2
qu2ÞT
and
fðuÞ ¼ ða1q1u;a2q2u;qu2 þ a1p1 þ a2p2; uðqeþ 1
2
qu2 þ a1p1 þ a2p2ÞÞ

T
:

The volume fraction equation and the internal energy equations are discretized as, see [34],
anþ1
1j ¼ an

1j �
Dt
Dx
ðua1Þ�jþ1

2
� ðua1Þ�j�1

2
� an

1j u�jþ1
2
� u�j�1

2

� �� �
;

ðaqeÞnþ1
kj ¼ ðaqeÞnkj �

Dt
Dx
ðaqeuÞ�k;jþ1

2
� ðaqeuÞ�k;j�1

2
þ ðapÞnkj u�jþ1

2
� u�j�1

2

� �� �
:

To achieve a second-order accuracy we use the MUSCL method detailed in Section 3.1.2.

5.2.3. Pressure relaxation and the correction criterion
It is clear that the pressure relaxation procedure for the seven-equation model that is introduced in [27] can be easily

used for the six-equation model. Also we refer to the relaxation procedure that is used in Ref. [34]. We see that there is
no significant difference between the results of the two procedures in our numerical results.

To make the relaxed pressure in agreement with the mixture EOS a correction criterion of [34] is used. From the SG-EOS
(5a) for each phase with the pressure equilibrium we obtain the following expression for the mixture EOS, see [33,34]
pðq1;q2; e;a1Þ ¼
qe� a1q1q1 � a2q2q2 �

a1c1p1
c1�1 þ

a2c2p2
c2�1

� �
a1

c1�1þ
a2

c2�1

: ð70Þ
The mixture pressure (70) is obtained from the evolution of the mixture total energy (66). This is expected to be accurate in
the entire field flow since the Eq. (66) is written in the conservative formulation.

By using evolution of the mixture total energy (66) we can find the value of qe. Using this value in (70) we can find the
value of the mixture pressure. Other variables in the relation (70) are estimated by the relaxation step. In this way we deter-
mine the value of the mixture pressure that agrees with the mixture EOS, then we use this value with the SG-EOS for each
phase to reset the values of the internal energies.

5.3. Modeling of the heat and mass transfer for the six-equation model

To take into account the heat and mass transfer we have to solve the following system of ODE at each time step after the
pressure relaxation step
dU
dt
¼ SQ þ Sm: ð71Þ
The system (71) is solved by considering each one of the source vectors alone. According to our assumptions during the tem-
perature relaxation the pressures will stay in equilibrium, i.e. the condition (23) holds. And during the Gibbs free energy
relaxation the pressures and the temperatures will stay in equilibrium, i.e. the conditions (38) hold.

The heat source vector is modeled as
SQ ¼
Q
j
;0; 0;0;Q ;�Q ;0

� �T

; ð72Þ
where Q ¼ hðT2 � T1Þ. Note that the last element of SQ corresponds to the redundant Eq. (66). It is clear that the value of j
(30) for the seven-equation model works also for the six-equation model and satisfies the condition (23). Also it is easy to see
that the same method of temperature relaxation for the seven-equation model can be used for the six-equation model.

The vector Sm is modeled as
Sm ¼
_m
.
; _m;� _m;0; ei _m;�ei _m;0

� �
; ð73Þ
where _m ¼ mðg2 � g1Þ. The values of . and ei that satisfy the conditions (38) are given in (49). Also the Gibbs free energy
relaxation procedures for the seven-equation model can be used directly here.



2982 A. Zein et al. / Journal of Computational Physics 229 (2010) 2964–2998
Thus the final six-equation model with heat and mass transfer is given as
Fig. 1.
100.65
@a1

@t
þ u

@a1

@x
¼ lðp1 � p2Þ þ

1
j

Q þ 1
.

_m; ð74aÞ

@a1q1

@t
þ @ða1q1uÞ

@x
¼ _m; ð74bÞ

@a2q2

@t
þ @ða2q2uÞ

@x
¼ � _m; ð74cÞ

@qu
@t
þ @ðqu2 þ a1p1 þ a2p2Þ

@x
¼ 0; ð74dÞ

@a1q1e1

@t
þ @a1q1e1u

@x
þ a1p1

@u
@x
¼ lpIðp2 � p1Þ þ Q þ ei _m; ð74eÞ

@a2q2e2

@t
þ @a2q2e2u

@x
þ a2p2

@u
@x
¼ �lpIðp2 � p1Þ � Q � ei _m: ð74fÞ
On the other hand, the six-equation model with heat and mass transfer is obtained directly from the seven-equation model
involving the heat and mass transfer by the limit of infinitely fast velocity relaxation. This is shown in the Appendix B. We
apply the reduction method of Chen et al. [6] on the seven-equation model including the heat and mass transfer (64) assum-
ing stiff velocity relaxation. The resulting model is the six-equation model (74).

6. Numerical results

The tests for metastable liquids in Ref. [33] are used.

6.1. Two-phase shock tube

Consider a 1 m shock tube filled with liquid dodecane under high pressure at the left, and with the vapor dodecane at
atmospheric pressure at the right. The initial discontinuity is set at 0:75 m, and the initial data are
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Dodecane liquid–vapor shock tube without phase transition, by using the seven-equation model. The mesh involves 1250 cells, the CPU time is
s and the number of time steps is 7197. The scale for the velocity graph is chosen in this way for a direct comparison with the velocity graph in Fig. 2.
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Left : pl ¼ 108 Pa; ql ¼ 500 kg=m3; ul ¼ 0 m=s

Right : pv ¼ 105 Pa; qv ¼ 2 kg=m3; uv ¼ 0 m=s:
For numerical reasons, in each side of the shock tube we allow the presence of a small volume fraction of the other fluid,
typically 10�6.

All computations for this example were done with a CFL number of 0.6. They used the first Gibbs free energy relaxation
procedure with a limitation on the source terms given by (56). The time step for the fluid motion is restricted by the CFL
number, but we observed that the Gibbs free energy relaxation procedure may require smaller time to ensure the positivity
of the volume fraction. This means that sometimes the Eqs. (37) are stiff. Thus by using the limitation (56) a smaller time
step is used for the Gibbs free energy relaxation procedure and successive point integrations are done to cover the complete
hydrodynamic step that is restricted by the CFL number. In the presence of stiffness from the Gibbs free energy relaxation,
the first Gibbs free energy relaxation procedure is more appropriate than the second relaxation procedure, this is due to the
easy of impostion the limitation (56) on the source terms.

By using the seven-equation model the results are shown at time t ¼ 473 ls. Fig. 1 gives the results without phase tran-
sition, while in Fig. 2 we see the case when the phase transition is included.

In comparison between the two figures, an extra wave appears between the rarefaction wave and the contact disconti-
nuity which corresponds the evaporation front. Indeed, rarefaction waves propagate through the liquid producing a super-
heated liquid and evaporation has occurred. An extra wave representing the evaporation front propagates through the
superheated liquid and produces a liquid vapor mixture at thermodynamic equilibrium with a high velocity, for more details
see [33].

A comparison between the results of the six-equation model and the seven-equation model is shown in Figs. 3–6 by using
the same number of cells and the same type of the Riemann solver. It is clear that for both cases, with or without the phase
transition, the results almost coincide. Just a very small difference appears at the left rarefaction in the curves of the pressure.
Such a small difference has no significant numerical meaning. This small difference appears in both cases i.e. with or without
the phase transition in the same manner, see the pressure profiles on logarithmic scales, Figs. 4 and 5, the pressure profiles
are drawn separately to be able to see the differences. Thus this small difference is not related to the treatment of the phase
transition.
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Dodecane liquid–vapor shock tube with phase transition, by using the seven-equation model. The mesh involves 1250 cells, the CPU time is 151.98 s
number of time steps is 8828.
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Fig. 3. Dodecane liquid–vapor shock tube without phase transition, a comparison between the results of the seven-equation model (lines) and the six-
equation model results (symbols). The computations used 1250 cells. For the seven-equation model results: The CPU time is 100.65 s with 7197 time steps.
For the six-equation model results: The CPU time is 14.46 s with 1557 time steps.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

101

102

103

x (m)

Pr
es

su
re

 (b
ar

)

Fig. 4. Dodecane liquid–vapor shock tube without phase transition. The pressure profile over (10,000) cells, by the seven-equation model (lines) and the
six-equation model (symbols). For the seven-equation model: The CPU time is 8145.17 s taking 56,749 time steps. For the six-equation model: The CPU time
is 1035.01 s with 12,452 time steps.
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At the right face of the left rarefaction wave in the pressure profile in Figs. 2 and 5 we can see a small distortion which
does not appear in the results of Saurel et al. [33] by using the five-equation model. We reran this test for higher number of
cells for both models, seven-equation and six-equation, but observed no change. In fact we see the same feature on the curve
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Fig. 5. Dodecane liquid–vapor shock tube with phase transition. The pressure profile, a comparison between the results of the seven-equation model (lines)
and the six-equation model results (symbols). The computations were done with 1250 cells. For the seven-equation model: The CPU time is 151.98 s with
8828 time steps. For the six-equation model: The CPU time is 19.87 s with 1556 time steps.
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Fig. 6. Dodecane liquid–vapor shock tube with phase transition, a comparison between the results of the seven-equation model (lines) and the six-equation
model results (symbols). The computations used 1250 cells. For the seven-equation model: The CPU time is 151.98 s with 8828 time steps. For the six-
equation model: The CPU time is 19.87 s with 1556 time steps.
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of the pressure without phase transition, see Fig. 4. The pressure curve is shown on logarithmic scale, 10,000 cells were used
in the computations but this distortion still appears. Thus we conclude that this is not related to our new modifications for
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heat and mass transfer. This may come from the nature of the initial seven-equation or six-equation model or from the
numerical method without phase transition. Moreover, such differences between the results of the seven-equation model
and the five-equation model without phase transition appear also in the results of [23]. This requires further investigation.

In result, for this example, we see that there is no significant difference between the results of the seven-equation model
and the six-equation model and both models give similar results. But there is a significant difference in the required CPU
time. The required time for the six-equation model is much smaller ð
 13%Þ than that required for the seven-equation
model.
6.2. Validation against shock tube experiments

Experimental results were obtained by Simões-Moreira and Shepherd [36]. Liquid dodecane in a tube was suddenly ex-
panded into a low pressure chamber ð1 mbarÞ. An evaporation front or wave propagated into metastable liquid with a steady
mean velocity. This velocity was measured for different initial temperatures of liquid dodecane. Also pressure data were ob-
tained during the evaporation event before and after the evaporation wave, see [36] and for full details see the Ph.D. Thesis of
Simões-Moreira [35].

At each temperature we compute the front velocity under conditions which are close to the experimental conditions with
help of Le Metayer et al. [21]. We consider a low pressure chamber ð1 mbarÞ filled with gaseous dodecane at right side of the
shock tube with density 10�4 kg=m3. While a liquid dodecane is considered initially at the left side of the shock tube with a
higher pressure. We adjust the initial pressure of the left hand side, so that the pressure in the state before the evaporation
front is equal to the measured value. The density of the liquid is calculated from the equation of state (5b), as the initial tem-
perature is known.

Table 3 shows the estimated initial pressure that we use for each temperature, column two. The columns three and four
represent the experimental data for the pressure before the evaporation wave and the front velocity respectively [36]. The
fifth column shows the computed values for the front velocity by present model.
Table 3
Estimated initial pressure, experimental results and the computed front velocity at several initial temperatures.

Tl ðKÞ pl (bar) pB (bar) UF ðm=sÞ (measured) UF ðm=sÞ (computed)

453 1.5 0.24 0.253 0.147
473 2.2 0.33 0.309 0.240
489 3.0 0.44 0.390 0.328
503 3.9 0.59 0.472 0.441
523 5.0 0.83 0.648 0.576
543 7.5 1.19 0.837 0.888
563 11.0 1.91 1.381 1.337
573 13.0 2.12 1.578 1.620

453 473 493 513 533 553 573
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Fig. 7. Evaporation front velocity versus initial temperature of liquid dodecane. Comparison between our results with the experimental results of Simões-
Moreira and Shepherd [36] and the computed results of Saurel et al. [33].
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As in [33] the front velocity is computed as a local wave speed, i.e. UF ¼ ððquÞi � ðquÞi�1Þ=ðqi � qi�1Þ, where i refers to the
state after the evaporation wave. The computed values for the front velocity are calculated at several time ponits in the range
between 200 ls and 500 ls. Then an averaged value is taken. We see that for each case the computed values at different
times are very close.

A comparison between our results with the experimental results and the results of Saurel et al. [33] is shown in Fig. 7. It is
clear that our results are more close to the experimental results. There is still not perfect agreement with the experimental
data. This is related to several sources, like how realistic the equations of state we used are and how close we are to the real
initial conditions of the experiments. However we have a reasonable agreement with the experimental data also in the ten-
dency of the relation between the front velocity and the initial temperature, i.e. the front velocity increases if the temper-
ature increases.
6.3. Two-phase expansion tube

This test consists of a 1 m long tube filled with liquid water at atmospheric pressure and with density ql ¼ 1150 kg=m3. A
weak volume fraction of vapor ðav ¼ 0:01Þ is initially added to the liquid. The initial discontinuity is set at 0:5 m, the left
velocity is �2 m=s and the right velocity is 2 m=s.

In this test the water can not be treated as pure, and only the metastability condition is used to activate the phase tran-
sition, i.e. phase transition occurs if the liquid is metastable, i.e. if Tl > TsatðpequiÞ. For the computation of TsatðpequiÞ see Appen-
dix C.

This test case requires a small time step to obtain a stable solution (CFL 
 0:15). When the strong rarefaction are consid-
ered a smaller time step is required (CFL 
 0:03). Here for the sake of comparison we choose to do all computations with
CFL = 0.03. The small time here indicates that there is a stiffness coming from the relaxation procedures.

Both procedures of the Gibbs free energy relaxation give the same results, but we consider that the second procedure has
a better resolution, thus it is adopted for this test case.

In Fig. 8, we see the solution of this problem without phase transition at t ¼ 3:2 ms. The results are obtained by the seven-
equation model and are compared with those of the six-equation model, they are completely coinciding. The solution
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Fig. 8. Water liquid–vapor expansion tube without phase transition, by using the seven-equation model (lines) and six-equation model (symbols). The
computations were done with 5000 cells. For the seven-equation model: The CPU time is 14.772 h with 763,550 time steps. For the six-equation model: The
CPU time is 7.305 h with 763,726 time steps.



Fig. 10. The waves pattern that correspond to the solutions in Figs. 9 and 11. As shown the evaporation waves are expansion waves.
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Fig. 9. Water liquid–vapor expansion tube with phase transition at t ¼ 3:2 ms, the computed results by the seven-equation model with phase transition
(symbols) are compared with the results of the same model without phase transition (lines). The computations were done with 5000 cells. For the model
without phase transition: The CPU time is 14.772 h with 763,550 time steps. when the phase transition is included: The CPU time is 18.838 h with 763,550
time steps.
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involves two expansion waves. The vapor volume fraction increases at the center of the domain due to the gas mechanical
expansion present in small proportions [33].

The rarefaction waves make the liquid metastable and phase transition has to be added. Fig. 9 presents the solution when
the phase transition is involved and is compared with the solution without phase transition at t ¼ 3:2 ms. Liquid water is
expanded until the saturation pressure is reached (see the pressure graph) then evaporation appears and quite small of vapor
is created, for details see [33]. In Fig. 11 a comparison between the results of the seven-equation and the six-equation models
is made at the same time, the curves are completely coinciding.
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The solution with phase transition, Figs. 9 and 11, is composed of four expansion waves. This is clear if we consider the
vapor volume fraction profile on a logarithmic scale as in Fig. 12. Thus the wave pattern is as drawn in Fig. 10. The extra two
expansion waves correspond to the evaporation fronts.
V a p o u r  m a s s  f r a c t i o na p o u r  v o l u m e  f r a c t i o n
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Fig. 13. Water liquid–vapor expansion tube with phase transition at time t ¼ 59 ms, by using the seven-equation model (lines) and six-equation model
(symbols). The two slow evaporation waves are visible. The computations were done with 3200 cells. For the seven-equation model: The CPU time is
116.078 h with 8,217,444 time steps. For the six-equation model: The CPU time is 99.406 h with 8,217,444 time steps.
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If we consider the solution at later time, when t ¼ 59 ms as in Fig. 13, the two leading fast expansion waves leave the tube
and the two slow evaporation waves are clearly visible. It is clear that these evaporation waves are expansion waves. Also it
is clear that the results of the seven-equation model and the six-equation model are completely coinciding.

To see the four expansion waves in one single graph we increase the value of the velocity which means an increase in the
rarefaction effects. Under the same conditions except with a velocity �100 m=s on the left and 100 m=s on the right, the four
waves are clearly visible as in Fig. 14 at time t ¼ 1:5 ms.

When the rarefaction effects become stronger we observe some difficulties. If the same conditions are maintained except
the velocity is increased ðJ 200 m=sÞ, we see that there are some differences between the results of both models. To con-
sider such difficulty also for the sake of comparsion with the results of Saurel et al. [33], we take the velocity �500 m=s on
the left and 500 m=s on the right. The results are shown in Fig. 15 at time t ¼ 0:58 ms. There are some differences in the
profiles of the pressure and the vapor mass fraction. Moreover there are some oscillations in the curve of the vapor mass
fraction. We think that the differences in the results of both models may be related to the approximation of the non-conser-
vative terms and to the fact that in seven-equation model an approximation is used in the velocity relaxation procedure. This
may cause some deviation as the difference between the initial velocities is increased.

Under the grid refinement, the differences between the pressure profiles are decreased. They disappear with a very fine
grid, as is shown in Fig. 16. But the difference between the vapor mass fraction profiles remains, moreover the oscillations are
more pronounced. To understand why the oscillations increase with grid refinement, we consider all variables that are re-
lated to the vapor mass fraction Y1 ¼ a1q1=q. We see that as the number of the cells increases the mixture density decreases
to a value very close to zero with small oscillations. Also the difference between the mixture density of the two models is
reduced. But since the mixture density with low values lies in the denominator of the relation of Y1, both of the differences
and the oscillations in the curves of the vapor mass fraction will be more significant.

Again in this example it is noted that the required CPU time for the six-equation model is smaller than the CPU time that
is required for the seven-equation model, in average it is about 66%. In all cases the results of both models coincide except
when the difference between the initial velocities increases to a certain value, after that value is reached we observe a small
deviation in the results of both models, also some oscillations appear. This problem is partially reduced under grid
refinement.
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Fig. 14. Water liquid–vapor expansion tube with phase transition and strong rarefaction effects (initial juj ¼ 100 m=s) at time t ¼ 1:5 ms. The computations
are done with 5000 cells. For the seven-equation model: The CPU time is 8.537 h with 449,836 time steps. For the six-equation model: The CPU time is
5.700 h with 381,778 time steps.
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As a result we think that since both models give the same results and also both of them may face similar problems under
extreme initial conditions. We think that the six-equation model is to be preferred for practical applications since it is less
expensive. Moreover it is easier to modify this model to the multiphase case.
7. Conclusion

In this paper, we modified the seven-equation model for two-phase flows to include the heat and mass transfer through
relaxation effects. Depending on the assumption that each property relaxes in a time is considerably different from the other
characteristic times, we were able to model the effect of heat and mass transfer by using temperature and Gibbs free energy
relaxations. The same ideas are also applied to the six-equation model with a single velocity, which is obtained from the
seven-equation model in the limit of zero velocity relaxation time.

A modified Godunov-type method is used to solve the hyperbolic part of each model, while simple relaxation procedures
are proposed for the temperature and Gibbs free energy relaxations.

We tested this model on the test problems of Saurel et al. [33]. We were able to see also the extra expansion waves in our
results which correspond to the evaporation fronts. Our results are similar to the results of Saurel et al. [33] with few
differences.

Computed front velocities in a shock tube at different initial temperatures are compared with experimental ones. A rea-
sonable agreement is achieved.

A comparison between the results of the seven-equation model and the six-equation model was made. Both models al-
most give the same results, but the six-equation model is less expensive than the seven-equation model and easier to adopt
to the multiphase case.

Due to the relaxation processes a stiffness may be encountered during the numerical computations. This requires a smal-
ler time step than is needed for the hydrodynamic system. In particular, if the stiffness comes from the Gibbs free energy
relaxation procedure it is possible to use a limitation on the source terms which can be used to find reduced time steps. Then
a successive point integration is used to cover the complete hydrodynamic time step. Otherwise small CFL numbers would
used and this consumes more computation time. In fact, this point still requires further efforts. For future work, the efficiency
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Fig. 16. Water liquid–vapor expansion tube with phase transition and strong rarefaction effects (initial juj ¼ 500 m=s) at time t ¼ 0:58 ms. By using the
seven-equation model (lines) and six-equation model (symbols). The computations are done with 25,000 cells. For the seven-equation model: The CPU time
is 112.393 h with 1,090,545 time steps. For the six-equation model: The CPU time is 85.4813 h with 934,593 time steps.
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Where the speed of sound ck is given in (4) and cI;k, the speed of sound at interface, is determined by
c2
I;k ¼

pI
q2

k
� @ek

@qk

� �
pk

@ek
@pk

� �
qk

; k ¼ 1;2: ðA:2Þ
The matrix A has real eigenvalues that are given by the following expressions
k1 ¼ uI;

k2 ¼ u1 � c1; k3 ¼ u1; k4 ¼ u1 þ c1;

k5 ¼ u2 � c2; k6 ¼ u2; k7 ¼ u2 þ c2:
The corresponding right eigenvectors are
r1 ¼

a1a2r1r2

�a2r2ðq1ðr1 � c2
I;1Þ þ p1 � pIÞ

a2r2ðu1 � uIÞðp1 � pI � q1c2
I;1Þ=q1

a2r2ðq1c2
I;1ðu1 � uIÞ2 � c2

1ðp1 � pIÞÞ

�a1r1ðq2ðc2
I;2 � r2Þ � p2 þ pIÞ

a1r1ðu2 � uIÞð�p2 þ pI þ q2c2
I;2Þ=q2

a1r1ð�q2c2
I;2ðu2 � uIÞ2 þ c2

2ðp2 � pIÞÞ

26666666666666664

37777777777777775
; ðA:3Þ
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r2 ¼

0
q1

�c1

q1c2
1

0
0
0

2666666666664

3777777777775
; r3 ¼

0
1
0
0
0
0
0

2666666666664

3777777777775
; r4 ¼

0
q1

c1

q1c2
1

0
0
0

2666666666664

3777777777775
ðA:4Þ

r5 ¼

0
0
0
0
q2

�c2

q2c2
2

2666666666664

3777777777775
; r6 ¼

0
0
0
0
1
0
0

2666666666664

3777777777775
; r7 ¼

0
0
0
0
q2

c2

q2c2
2

2666666666664

3777777777775
: ðA:5Þ
where
r1 ¼ c2
1 � ðu1 � uIÞ2; r2 ¼ c2

2 � ðu2 � uIÞ2:
Thus, the system (1) is strictly hyperbolic except when some of the eigenvalues coincide. Indeed the eigenvectors A.3, A.4
and A.5 become linearly dependent if any one of the conditions
a1 ¼ 0; a2 ¼ 0; r1 ¼ 0; r2 ¼ 0
holds. For more details see Andrianov [2].
Consider the Riemann problem for the system (A.1) which is the initial-value problem with initial data of the form
Wðx;0Þ ¼
WL; x < 0
WR; x > 0:




One can show that the characteristic fields associated with k1; k3 and k6 are linearly degenerate, and the 2-, 4-, 5- and 7-fields
are genuinely nonlinear. For a proof see Labois [16].

Appendix B. Derivation of the six-equation model from the seven-equation model

This appendix is devoted to the derivation of the six-equation model with heat and mass transfer (74) from the full seven-
equation model with heat and mass transfer (64) by the asymptotic limit considering stiff velocity relaxation. We follow the
method of Chen et al. [6]. This method is used by Murrone and Guillard [23] in the derivation of the five-equation model
from the seven-equation model.

Firstly, we introduce briefly the method of reduction for a system of hyperbolic conservation laws in the presence of stiff
relaxation terms using the notations of Murrone and Guillard [23].

Consider a hyperbolic system with stiff source relaxation terms, i.e. consider the following system
@W
@t
þ AðWÞ @W

@x
¼ RðWÞ

e
þ SðWÞ ðB:1Þ
with e! 0þ. The vector W belongs to X, some open subset of RN .
As e! 0þ, the solution of the system (B.1) is expected to be close to the set I � RN , where
I ¼ W 2 RN; RðWÞ ¼ 0
� �

:

We make use of the following assumption, Murrone and Guillard [23]:

Assumption 1. The set of equations RðWÞ ¼ 0 defines a smooth manifold of dimension n, where 0 < n < N. Moreover, for
any W 2 I we explicitly know the parameterization M from x an open subset of Rn onto V a neighborhood of W in I, i.e.
M : x � Rn ! V � I � RN;

w!W ¼ MðwÞ:
Under Assumption 1 the following holds. For any w 2 x the Jacobian matrix dMw is a full rank matrix. Also the column
vectors of dMw form a basis of kerðR0ðMðwÞÞÞ. For the proof see [23].

Let
C ¼ ½dM1
w; . . . ;dMn

w; I
1; . . . ; IN�n�; ðB:2Þ
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where dM1
w; . . . ; dMn

w are the column vectors of dMw and I1; . . . ; IN�n are a basis of the range rngðR0ðMðwÞÞÞ of R0ðMðwÞÞ. The
matrix (B.2) is invertible, let B be the matrix composed of the first n rows of the inverse of the matrix C. Then we have the
following results:
B � dMw ¼ In�n; the identity matrix ðB:3aÞ
B � R0ðMðwÞÞ ¼ 0: ðB:3bÞ
For proof see the same Ref. [23].
Decompose the state vector W as
W ¼ MðwÞ þ eV; ðB:4Þ
where V is a small perturbation around the state vector MðwÞ.
To obtain the reduced model we use the expression (B.4) in the system (B.1) and get
@MðwÞ
@t

þ AðMðwÞÞ @MðwÞ
@x

� R0ðMðwÞÞ � V ¼ SðMðwÞÞ þ OðeÞ: ðB:5Þ
Multiplying (B.5) by B, using (B.3) and neglecting the terms of order e, we obtain the reduced model of the system (B.1)
@w
@t
þ B � AðMðwÞÞ � dMw

@w
@x
¼ B � SðMðwÞÞ: ðB:6Þ
Now, we apply the above method for the reduction by using the asymptotic limit on the seven-equation model assuming a
stiff velocity relaxation.

Take the vector of primitive variables as W ¼ ða1;q1;q2;u1;u2; p1; p2Þ, and write the seven-equation model (64) accom-
panied with all relaxation terms in the form (B.1). In this case, the source vector RðWÞ

e consists of the velocity relaxation terms
which is stiff, i.e. k ¼ 1

e, where e! 0þ. While the source vector SðWÞ is decomposed as
SðWÞ ¼ SPðWÞ þ SQ ðWÞ þ SmðWÞ:
The matrix AðWÞ and the source vectors can be given as
AðWÞ ¼

uI 0 0 0 0 0 0
� q1

a1
ðuI � u1Þ u1 0 q1 0 0 0

q2
a2
ðuI � u2Þ 0 u2 0 q2 0 0

� pI�p1
a1q1

0 0 u1 0 1
q1

0
pI�p2
a2q2

0 0 0 u2 0 1
q2

� C1
a1

pI � q2
1

@e1
@q1

� �
p1

� 	
ðuI � u1Þ 0 0 q1c2

1 0 u1 0

C2
a2

pI � q2
2

@e2
@q2

� �
p2

� 	
ðuI � u2Þ 0 0 0 q2c2

2 0 u2

2666666666666666664

3777777777777777775

;

RðWÞ
e
¼

0
0
0

k
a1q1
ðu2 � u1Þ

� k
a2q2
ðu2 � u1Þ

k C1
a1
ðuI � u1Þðu2 � u1Þ

�k C2
a2
ðuI � u2Þðu2 � u1Þ

266666666666664

377777777777775
;

SPðWÞ ¼

lðp1 � p2Þ
l q1

a1
ðp2 � p1Þ

�lq2
a2
ðp2 � p1Þ
0
0

l C1
a1

pI � q2
1

@e1
@q1

� �
p1

� 	
ðp2 � p1Þ

�l C2
a2

pI � q2
2

@e2
@q2

� �
p2

� 	
ðp2 � p1Þ

26666666666666664

37777777777777775
; SQ ðWÞ ¼

1
j Q

� q1
a1j

Q
q2
a2j

Q

0
0

� q1c2
1

a1j
Q þ C1

a1
ð1þ p1

j ÞQ
q2c2

2
a2j

Q � C2
a2
ð1þ p2

j ÞQ

266666666666664

377777777777775
;
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SmðWÞ ¼

1
.

_m
1
a1
ð1� q1

. Þ _m

� 1
a2
ð1� q2

. Þ _m
1

a1q1
ðuI � u1Þ _m

� 1
a2q2
ðuI � u2Þ _m

c2
1

a1
ð1� q1

. Þ _mþ C1
a1
ðei � e1Þ þ ðuI�u1Þ2

2 � p1
q1
ð1� q1

. Þ
h i

_m

� c2
2

a2
ð1� q2

. Þ _m� C2
a2
ðei � e2Þ þ ðuI�u2Þ2

2 � p2
q2
ð1� q2

. Þ
h i

_m

266666666666666664

377777777777777775
:

Where Ck is given in (31).
The limit of zero velocity relaxation time gives a single velocity, i.e. u1 ¼ u2 ¼ u. Thus the vector of the primitive variables

for the reduced model is
w ¼ ða1;q1;q2; u;p1;p2Þ
T
:

So MðwÞ is defined as
M : w! MðwÞ ¼ ða1;q1;q2; u;u;p1; p2Þ
T
: ðB:7Þ
Then the Jacobian matrix of the transformation (B.7) is given as
dMw ¼

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2666666666664

3777777777775
: ðB:8Þ
It is easy to see that the Jacobian matrix R0 evaluated on the transformation is given as
R0ðMðwÞÞ ¼

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 � 1

a1q1

1
a1q1

0 0

0 0 0 1
a2q2

� 1
a2q2

0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

2666666666664

3777777777775
:

Obviously, the basis of rngðR0ðMðwÞÞÞ is
I1 ¼

0
0
0
� 1

a1q1

1
a2q2

0
0

2666666666664

3777777777775
: ðB:9Þ
From (B.8) and (B.9) we can find the matrix C, then we can find the matrix B
B ¼

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 a1q1

q
a2q2

q 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1

2666666664

3777777775
:
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By using the matrix B together with the above matrices we can find the reduced model as in (B.6). Thus the reduced model in
primitive variables is given as
@a1

@t
þ u

@a1

@x
¼ lðp1 � p2Þ þ

1
j

Q þ 1
.

_m; ðB:10aÞ

@q1

@t
þ u

@q1

@x
þ q1

@u
@x
¼ lq1

a1
ðp2 � p1Þ �

q1

a1j
Q þ 1

a1
1� q1

.

� �
_m; ðB:10bÞ

@q2

@t
þ u

@q2

@x
þ q2

@u
@x
¼ �lq2

a2
ðp2 � p1Þ þ

q2

a2j
Q � 1

a2
1� q2

.

� �
_m; ðB:10cÞ

@u
@t
þ u

@u
@x
þ ðp1 � p2Þ

q
@a1

@x
þ a1

q
@p1

@x
þ a2

q
@p2

@x
¼ 0; ðB:10dÞ

@p1

@t
þ u

@p1

@x
þ q1c2

1
@u
@x
¼ lC1

a1
pI � q2

1
@e1

@q1

� �
p1

" #
ðp2 � p1Þ �

q1c2
1

a1j
Q þ C1

a1
1þ p1

j

� �
Q

þ c2
1

a1
1� q1

.

� �
_mþ C1

a1
ðei � e1Þ �

p1

q1
1� q1

.

� �� 	
_m; ðB:10eÞ

@p2

@t
þ u

@p2

@x
þ q2c2

2
@u
@x
¼ �lC2

a2
pI � q2

2
@e2

@q2

� �
p2

" #
ðp2 � p1Þ þ

q2c2
2

a2j
Q � C2

a2
1þ p2

j

� �
Q

� c2
2

a2
1� q2

.

� �
_m� C2

a2
ðei � e2Þ �

p2

q2
1� q2

.

� �� 	
_m; ðB:10fÞ
where q ¼ a1q1 þ a2q2:

Using Eqs. (B.10b) and (B.10c) with (B.10a), we obtain
@a1q1

@t
þ @ða1q1uÞ

@x
¼ _m;

@a2q2

@t
þ @ða2q2uÞ

@x
¼ � _m:
Using these equations with (B.10d), we get
@qu
@t
þ @ðqu2 þ a1p1 þ a2p2Þ

@x
¼ 0:
The internal energy of each phase can be written as a function of the phase density and pressure, i.e. ek ¼ ekðqk; pkÞ; k ¼ 1;2:
Then we obtain the following expression for the differential dek
dek ¼
@ek

@qk

� �
pk

dqk þ
@ek

@pk

� �
qk

dpk: ðB:11Þ
With the help of this equation and with the equations of the system (B.10), we obtain the following equations for the internal
energies
@a1q1e1

@t
þ @a1q1e1u

@x
þ a1p1

@u
@x
¼ lpIðp2 � p1Þ þ Q þ ei _m;

@a2q2e2

@t
þ @a2q2e2u

@x
þ a2p2

@u
@x
¼ �lpIðp2 � p1Þ � Q � ei _m:
Thus the whole model can be written as in (74).

Appendix C. Determination of TsatðpequiÞ

The metastable condition Tk > TsatðpequiÞ is used to activate the phase transition. In this appendix we consider the com-
putation of the curve T ¼ TsatðpÞ.

Simply we use the same idea of [21,33] that at thermodynamic equilibrium the Gibbs free energies are equal, and this
equality provides a direct relation between the saturation pressure and temperature.

Using the SG-EOS (5) the Gibbs free energy gk is expressed as
gk ¼ ckCvk � q0k
� �

Tk � TkCvk ln
Tck

k

ðpk þ pkÞðck�1Þ þ qk:
At the saturation curve we have an equilibrium pressure p, an equilibrium temperature T and by the equality of the two
Gibbs free energies g1 and g2 we have
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c1Cv1 � q01
� �

T � TCv1 ln
Tc1

ðpþ p1Þðc1�1Þ þ q1 ¼ ðc2Cv2 � q02ÞT � TCv2 ln
Tc2

ðpþ p2Þðc2�1Þ þ q2:
This equation is nonlinear and can be solved by any iterative technique to find the saturation temperature in terms of the
saturation pressure.
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